
A Biomed Data Analyst Training Program

Data visualization

Professor Ron S. Kenett

1

Chapter 1 Analyzing Variability: Descriptive Statistics

Preview The chapter focuses on statistical variability and various methods of analyzing random data. Random results of experiments are illustrated with distinction between deterministic and random components of variability. The difference between accuracy and precision is explained. Frequency distributions are defined to represent random phenomena. Various characteristics of location and dispersion of frequency distributions are defined. The elements of exploratory data analysis are presented.

```
steelrod[26:] = steelrod[26:] - 3
```

```
ax = steelrod.plot(y='STEELROD', style='.', color='black')
ax.set_xlabel('Index')
ax.set_ylabel('Steel rod Length')
ax.hlines(y=steelrod[:26].mean(), xmin=0, xmax=26)
ax.hlines(y=steelrod[26:].mean(), xmin=26, xmax=len(steelrod))
plt.show()
```

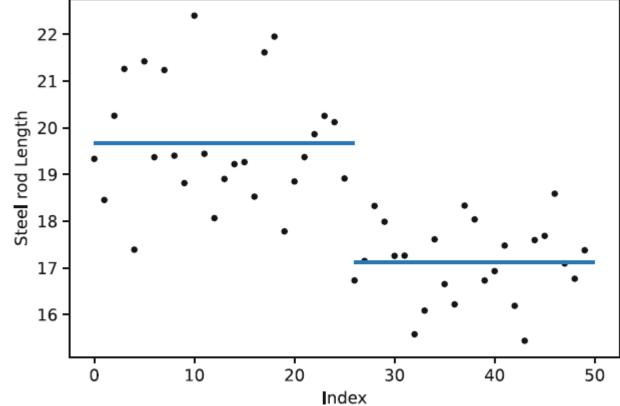


Fig. 1.2 Level shift after the first 25 observations

from scipy.stats import beta, norm

```
x = np.linspace(-3, 3, 200)
df = pd.DataFrame({'x': x,
            'steep': beta(8, 8, loc=-3, scale=6).pdf(x),
            'flat': beta(2.5, 2.5, loc=-3, scale=6).pdf(x),
           'normal': norm().pdf(x),
           })
ax = df.plot.line(x='x', y='steep', legend=False, color='black')
df.plot.line(x='x', y='normal', legend=False, color='black',
linestyle='--', ax=ax)
df.plot.line(x='x', y='flat', legend=False, color='black',
linestyle='-.', ax=ax)
ax.set ylabel('y')
                                                                 \geq
ax.text(0.5, 0.5, 'Steep')
ax.text(1.0, 0.35, 'Normal')
ax.text(2.0, 0.2, 'Flat')
plt.show()
```

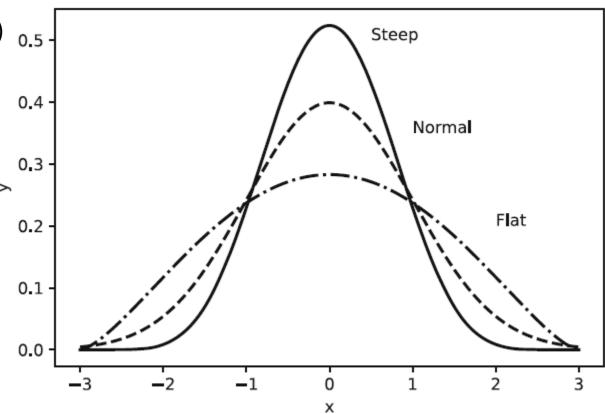


Fig. 1.13 Normal, steep, and flat distributions

```
X = mistat.load_data('YARNSTRG')
ax = X.plot.hist(bins=8, color='white', edgecolor='black',
legend=False, density=True)
X.plot.density(bw_method=0.2, ax=ax, color='black')
ax.set_xlabel('Log yarn strength')
plt.show()
```

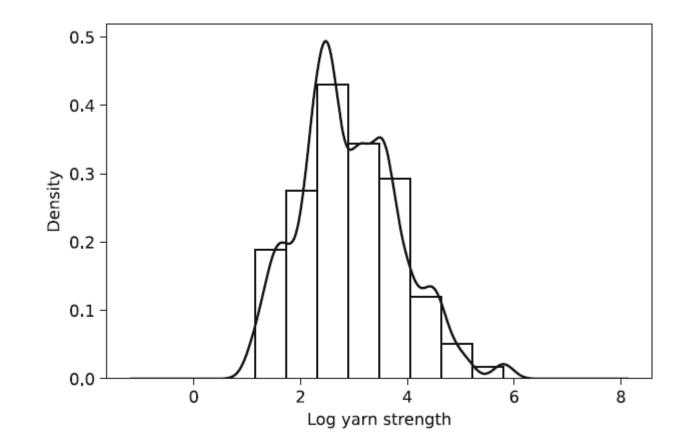
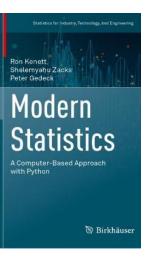



Fig. 1.14 Comparison of histogram and density plot for the log yarn strength datasets

Chapter 4 Variability in Several Dimensions and Regression Models

Preview When surveys or experiments are performed, measurements are usually taken on several characteristics of the observation elements in the sample. In such cases we have multivariate observations, and the statistical methods which are used to analyze the relationships between the values observed on different variables are called multivariate methods. In this chapter we introduce some of these methods. In particular, we focus attention on graphical methods, linear regression methods, and the analysis of contingency tables. The linear regression methods explore the linear relationship between a variable of interest and a set of variables, by which we try to predict the values of the variable of interest. Contingency tables analysis studies the association between qualitative (categorical) variables, on which we cannot apply the usual regression methods.

The following command would be sufficient to create the scatterplot matrix

```
#def panelPlot(x, y, **kwargs):
```

- # plt.scatter(x, y, **kwargs,
- # facecolors='none', edgecolor='black', s=20)
- # $dx = 0.05^{*}(max(x) min(x))$
- # plt.xlim(min(x)-dx, max(x) + dx)
- # $dy = 0.05^{*}(max(y) min(y))$
- # plt.ylim(min(y)-dy, max(y) + dy)

```
#g = sns.PairGrid(place[['xDev', 'yDev', 'tDev']])
```

```
#g = g.map_offdiag(panelPlot)
plt show()
```

plt.show()

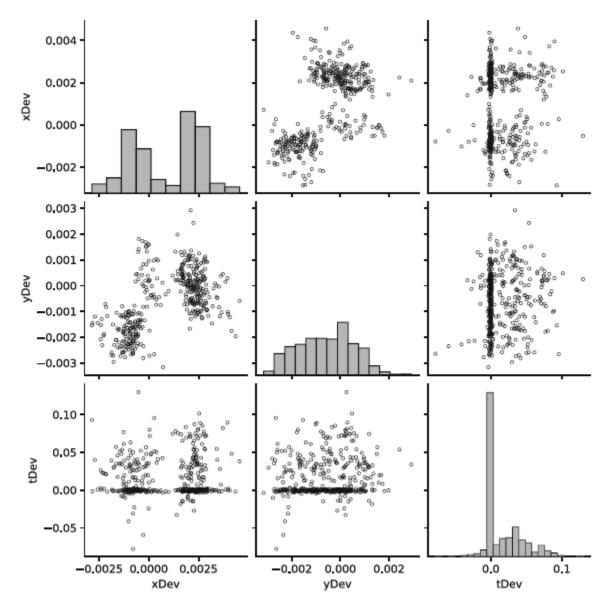
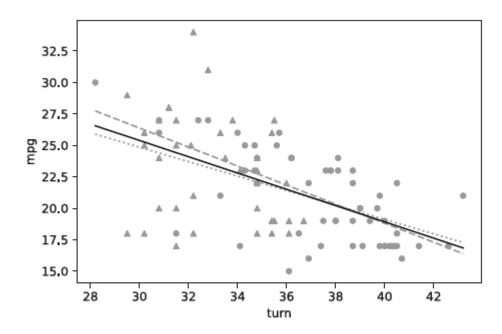



Fig. 4.2 Scatterplot matrix

```
# create visualization
ax = car_US.plot.scatter(x='turn', y='mpg', color='gray',
marker='o')
car_Asia.plot.scatter(x='turn', y='mpg', ax=ax, color='gray',
marker='^')
```

```
car_combined = car_combined.sort_values(['turn'])
ax.plot(car_combined['turn'],
model_US.predict(car_combined),
    color='gray', linestyle='--')
ax.plot(car_combined['turn'],
model_Asia.predict(car_combined),
    color='gray', linestyle=':')
ax.plot(car_combined['turn'],
model_simple.predict(car_combined),
    color='black', linestyle='-')
plt.show()
```


Fig. 4.16 Linear regression analysis for US (filled circle, dashed line) and Japanese cars (filled triangle, dotted line). The solid line is the linear regression of the combined data set

Presenting uncertainty in data

Capability of human mind for solving complex problems is limited compared with the size of problems

> Lack of objectively rational behaviour in real world. Cognitive illusions.

> Use of simple "rules of thumb" to simplify decision making

> Heuristics can be helpful, but can also lead to biases, especially in uncertain situations where probabilities are encountered

Presenting uncertainty in data

• "Nothing is certain"

• In many situations, decisions have to be based on probabilities

• Interpretation of probabilities is sometimes not straightforward

• Appropriate presentation can help to make the right decisions

Presenting uncertainty in data

- ➤ formulating the problem:
 - probabilities vs. frequencies
 - the framing effect
 - the anchoring effect
 - > underweighting base rates
 - hindsight and confirmation bias
 - belief persistence: Primacy and inertia effect
 - group conformity and decision regret

Judgment under uncertainty: Heuristics and biases

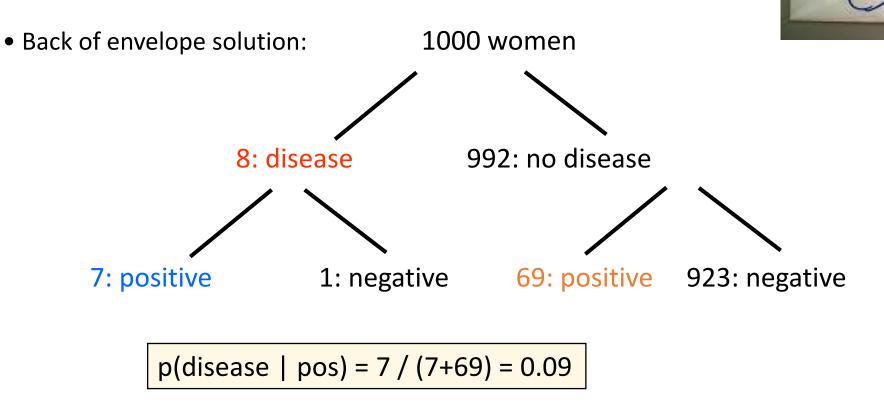
DANEL KARDENAN PAULILOVIC AMOUTVERIEY

Conditional probabilities

- Breast cancer screening. The facts:
 - Probability that a woman aged 40-50 has breast cancer = 0.8%
 - If a woman has breast cancer, probability of positive test = 90%
 - If a woman does not have breast cancer, prob. of positive test=7%
- Imagine a woman with a positive test.

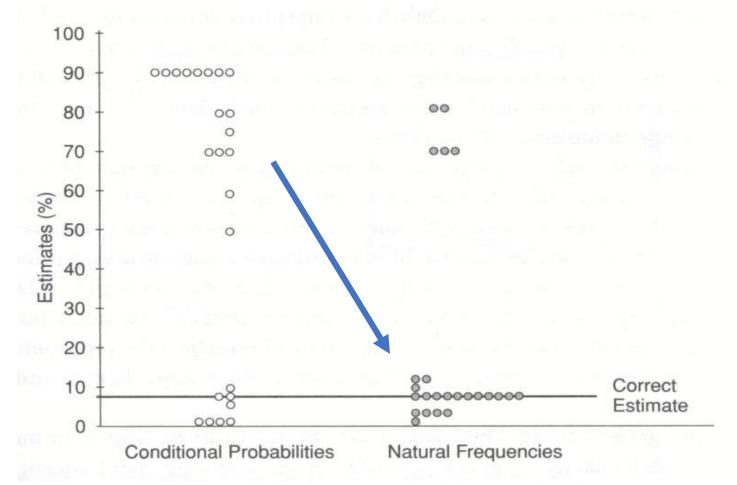
What is the probability, that she actually has breast cancer?

- Solution:
 - p(disease) = 0.008
 - p(pos|disease) = 0.90
 - p(pos| no disease) = 0.07
 - p(disease|pos)


= ------p(disease) * p(pos|disease) + p(no disease) * p(pos| no disease)

p(disease) * p(pos|disease)

= 0.09


Frequency formulation

- Breast cancer screening. The facts:
 - Probability that a woman aged 40-50 has breast cancer = 0.8%
 - If a woman has breast cancer, probability of positive test = 90%
 - If a woman does not have breast cancer, prob. of positive test=7%

5×3×8=

Probabilities vs. frequencies

Estimated chances of breast cancer, given a positive screening mammogram (Gigerenzer, 2002)

The framing effect

- The way a problem (or forecast) is formulated can affect a decision
- Imagine that London faces an unusual disease that is expected to kill 600 people.

Two alternative programs to combat disease:

- Program A: 200 people will be saved
- Program B: 1/3 probability 600 saved, 2/3 probability nobody saved

Tests indicate that 72% would select program A (risk-averse)

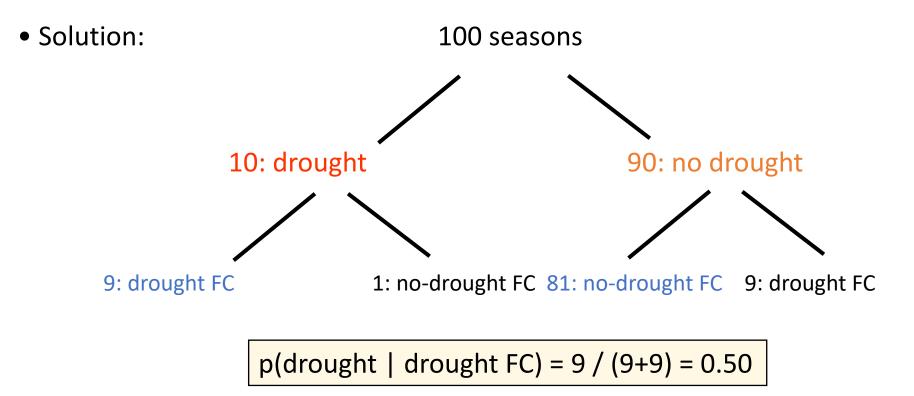
- Slightly changed wording:
 - Program C: 400 people will die
 - Program D: 1/3 prob. that nobody will die, 2/3 prob. that 600 will die

Tests indicate that 78% would select program D (risk-taking)

The framing effect in real life

- Professionals, experienced in decision-making, are still affected
- E.g., information for doctors:
 - mortality rate of 7% within 5 years -> hesitant to recommend
 - survival rate after 5 years of 93% -> more inclined to recommend
- For weather predictions this suggests different response to forecasts expressed as likelihood of drought or non-likelihood of wet conditions
- E.g., different response to: 30% chance of drought and 70% chance of normal or wet conditions
- Worded vs. numerical forecast:
 - 11% judge forecast "rain is likely" as poor if it did not rain
 - 37% judge forecast "70% chance of rain" as poor if it did not rain although they associate the word "likely" with probability of 70%

Test your knowledge of history


- What are the last three digits of your phone number?
- Add 400 to this number
- Do you think Attila the Hun was defeated in Europe before or after that year?
- In what year would you guess Attila the Hun was defeated?
- The correct answer is: A.D. 451

Range of initial anchor	Average estimate
400 - 599	629
600 – 799	680
800 – 999	789
1000 - 1199	885
1200 - 1399	988

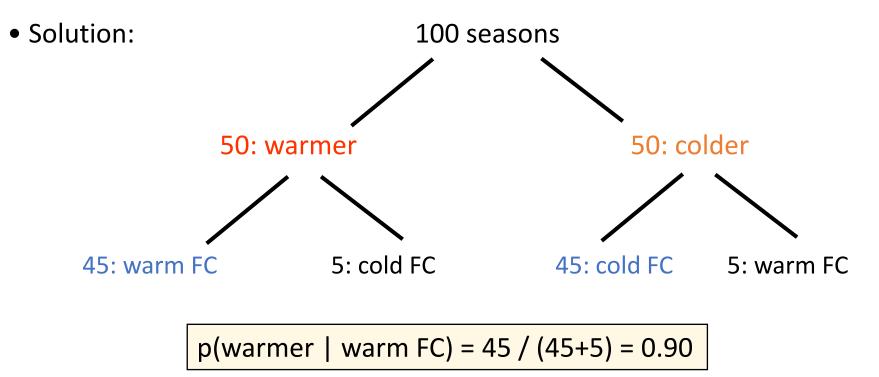
Underweighting base rates

- Imagine a climate model (with 90% accuracy) predicts drought
- Historically, there is 10% chance of drought
- What is the chance that drought will occur in next season?

Underweighting base rates

- Imagine a climate model (with 90% accuracy) predicts drought
- Historically, there is 10% chance of drought
- What is the chance that drought will occur in next season?

Challenge to convince user that


Model was correct 90% of time

The probability of a drought next season was only 50%

For equally likely events, accuracy translates into probabilities

Underweighting base rates

- Imagine a climate model (with 90% accuracy) predicts warmer than normal conditions
- There is a 50% chance of above normal
- What is the chance that warmer than normal conditions will occur?

Hindsight and confirmation bias

Men mark where they hit, and not where they miss. (Jevons, 1958)

• After finding out whether or not an event occurred, individuals tend to overestimate the degree to which they would have predicted the correct outcome

- Reported outcomes seem less surprising in hindsight than in foresight
- Example: El Nino 1997 regarded as "stunning success", although only one model was reported in the March 1997 NOAA Long-Lead Forecast Bulletin predicting more than slight warming. Some of the very poor forecasts simply ignored in hindsight
- Considerable evidence that people tend to ignore (and not search for) disconfirming information of any hypothesis
- Introduce "double-blind test" for model assessment, if posible

Belief persistence

- Primacy and inertia also tend to weight evidence inaccurately.
- People tend to weight more heavily evidence presented first, e.g. persons described as:
 - intelligent, industrious, impulsive, critical, stubborn, envious are more favourable perceived than persons described as
 - envious, stubborn, critical, impulsive, industrious, intelligent

• Inertia may lead people to ignore evidence that contradicts their prior belief (e.g. that a particular forecast system produces useful forecasts)

• Forecast producers may not recognise the disparity of model predictions, and instead rely too heavily on a forecast that supports their intuitive understanding of the current state of climate

Strategies to reduce cognitive illusions

• Recognition that decision-making is inherently biased

• Understanding how written forecasts, and numerical probability forecasts are interpreted by potential users

• Try to reduce impact of cognitive illusions by

encouraging forecaster groups to de-bias forecasts by e.g. reducing overconfidence or hindsight bias

➤ taking care that media reports and forecasts do not cause anchoring to extreme events (e.g. El Nino 82/83)

> taking care in wording forecasts to avoid framing

> avoid "intuitive" approach when combining forecasts, objective approaches exist and are more successful

ensuring that base-rates are not ignored

> using additional visual aids to convey real levels of skill

Checklists <u>https://fs.blog/before-you-make-that-big-decision/</u> **A Simple Checklist to Improve Decisions**

We owe thanks to the publishing industry. Their ability to take a concept and fill an entire category with a shotgun approach is the reason that more people are talking about biases.

Unfortunately, talk alone will not eliminate them but it is possible to take steps to counteract them. Reducing biases can make a huge difference in the quality of any decision and it is easier than you think.

In a recent article for Harvard Business Review, Daniel Kahneman (and others) <u>describe</u> a simple way to detect bias and minimize its effects in the most common type of decisions people make: determining whether to accept, reject, or pass on a recommendation.

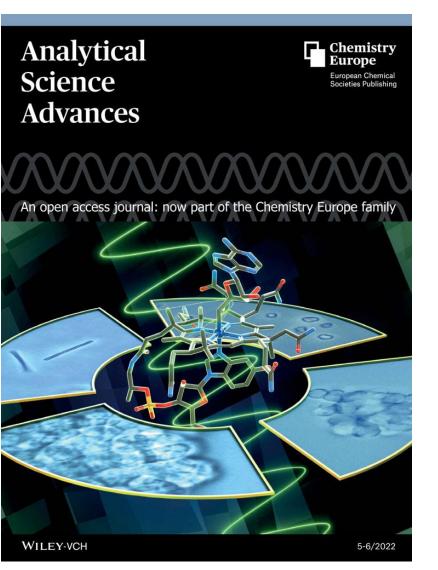
Checklists

https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/ansa.202000159

Research Article | 🖻 Open Access | 🞯 🔅 😒

Helping reviewers assess statistical analysis: A case study from analytic methods

Ron S. Kenett 🔀 Bernard G. Francq


First published: 16 June 2022 | https://doi.org/10.1002/ansa.202000159

SECTIONS

🎘 PDF 🔧 TOOLS < SHARE

Abstract

Analytic methods development, like many other disciplines, relies on experimentation and data analysis. Determining the contribution of a paper or report on a study incorporating data analysis is typically left to the reviewer's experience and good sense, without reliance on structured guidelines. This is amplified by the growing role of machine learning driven analysis, where results are based on computer intensive algorithm applications. The evaluation of a predictive model where cross validation was used to fit its parameters adds challenges to the evaluation of regression models, where the estimates can be easily reproduced. This lack of structure to support reviews increases uncertainty and variability in reviews. In this paper, aspects of statistical assessment are considered. We provide checklists for reviewers of applied statistics work with a focus on analytic method development. The checklist covers six aspects relevant to a review of statistical analysis, namely: (1) study design, (2) algorithmic and inferential methods in frequentism analysis, (3) Bayesian methods in Bayesian analysis (if relevant), (4) selective inference aspects, (5) severe testing properties and (6) presentation of findings. We provide a brief overview of these elements providing references for a more elaborate treatment. The robustness analysis of an analytical method is used to illustrate how an improvement can be achieved in response to questions in the checklist. The paper is aimed at both engineers and seasoned researchers.

Checklists

https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/ansa.202000159

Part	Questions
1. Study design	 1.1 Is the experimental set up clearly presented? 1.2 Have aliasing and power consideration been taken into account? 1.3 Is there reference to blocking, split plots and randomization? 1.4 Was an IRB required, and if so, was it obtained? (if relevant) 1.5 Are there any data ethics issues to consider?
2. Algorithmic and inferential methods	 2.1 Are the algorithmic and inferential methods uses clearly stated? 2.2 Is the analysis aiming at estimation, predictive or explanatory goals? 2.3 Are data and code available to replicate the analysis? 2.4 Are outcomes of inferential analysis properly interpreted?
3. Bayesian analysis	3.1 Are prior distributions justified using prior experience or data?3.2 What are the Bayesian methods used in the analysis?3.3 How are Bayes factors interpreted?
4. Selective inference	4.1 Has the study been pre-registered?4.2 Have any false discovery rate corrections been made?4.3 Is the presentation of findings affected by selective inference?
5. Severe testing	 5.1 Have the findings been tested with an option of failing the test? 5.2 Is the study a first or is it replicating previous studies? 5.3 Have probabilism, performance and probativeness criteria been considered? 5.4 What type of model is used in the analysis: primary models, experimental models or and data models? 5.5 If used, how are confidence interval (CI) interpreted?
6. Presentation of findings	 6.1 How are the research findings presented? 6.2 Have the research findings been generalized? 6.3 Are there any causality arguments presented? 6.4 In a causal study, are there issues of endogeneity (reverse-causation)?

TABLE 1 Questions for reviewing statistical analysis in applied research

Checklists

https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/ansa.202000159

TABLE 2 Checklist for analytic methods

Analytic method element	Description and question (Q)
Precision	This requirement makes sure that method variability is only a small proportion of the specifications range (upper specification limit – lower specification limit). This is also called gage reproducibility and repeatability (GR&R). Q: Does the study address precision? How?
Selectivity	Determination of impurities to monitor at each production step and specification of design methods that adequately discriminate the relative proportions of each impurity. <i>Q: Does the study address selectivity? How?</i>
Sensitivity	The achievement with the method of effective process control, by accurately reflecting changes in CQA's that are important relative to the specification limits. Q: Does the study address sensitivity? How?
Method Design Intent	Identification and specification of the analytical method performance Q: Is the method design intent stated?
Method Design Selection	Approach to the selection of the method work conditions to achieve the design intent Q: Is the study design described?
Method Control	Establishment and definition of appropriate controls for the components with the largest contributions to performance variability. Q: Is the application of the method discussed?
Method Control Validation	Demonstration of acceptable method performance with robust and effective controls. Q: Is the method validation demonstrated?
Method robustness	Testing robustness of analytical methods involves evaluating the influence of small changes in the operating conditions. Q: Is the method robustness evaluated?
Method ruggedness	Ruggedness testing identifies the degree of reproducibility of test results obtained by the analysis of the same sample under various normal test conditions such as different laboratories, analysts, and instruments Q: Is the method ruggedness evaluated?

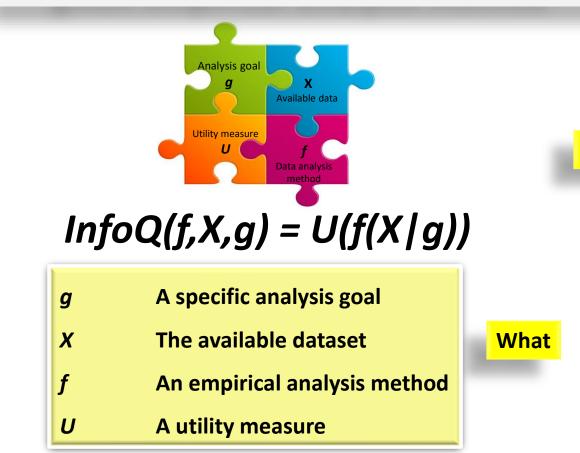
Helping authors and reviewers ask the right questions: The InfoQ framework for reviewing applied research

Ron S. Kenett^{a,*} and Galit Shmueli^b

^aUniversity of Turin, Italy and KPA Group, Raanana, Israel ^bInstitute of Service Science, National Tsing Hua University, Hsinchu, Taiwan

Abstract. Reviewers play a critical role in the publication process, the hallmark of scientific advancement. Yet, in many journals, determining the contribution of a paper is left to the reviewer's experience and good sense without providing structured guidelines. This lack of guidance to authors and reviewers increases uncertainty and variability in the usefulness of reviews. We propose an approach, based on the Information Quality (InfoQ) framework, that provides guideline scaffolding for the review process of applied research papers submitted for publication in scientific journals.

Keywords: Information quality, publication, empirical study, data analysis, reviewing guidelines


11

Dimension	Questions
1. Data Resolution	1.1 Is the data scale used aligned with the stated goal?1.2 How reliable and precise are the measuring devices or data sources?1.3 Is the data analysis suitable for the data aggregation level?
2. Data Structure	2.1 Is the type of the data used aligned with the stated goal?2.2 Are data integrity details (corrupted/missing values) described and handled appropriately?2.3 Are the analysis methods suitable for the data structure?
3. Data Integration	3.1 Are the data integrated from multiple sources? If so, what is the credibility of each source?3.2 How is the integration done? Are there linkage issues that lead to dropping crucial information?3.3 Does the data integration add value in terms of the stated goal?3.4 Does the data integration cause any privacy or confidentiality concerns?
4. Temporal Relevance	4.1 Considering the data collection, data analysis and deployment stages, is any of them time-sensitive?4.2 Does the time gap between data collection and analysis cause any concern?4.3 Is the time gap between the data collection and analysis and the intended use of the model (e.g., in terms of policy recommendations) of any concern?
5. Chronology of Data & Goal	5.1 If the stated goal is predictive, are all the predictor variables expected to be available at the time of prediction5.2 If the stated goal is causal, do the causal variables precede the effects?5.3 In a causal study, are there issues of endogeneity (reverse-causation)?
6. Generalizability	 6.1 Is the stated goal statistical or scientific generalizability? 6.2 For statistical generalizability in the case of inference, does the paper answer the question "What population does the sample represent?" 6.3 For generalizability in the case of a stated predictive goal (predicting the values of new observations; forecasting future values), are the results generalizable to the to-be-predicted data? 6.4 Does the paper provide sufficient detail for the type of needed reproducibility and/or repeatability, and/or replicability?
7. Operationalization	Construct operationalization: 7.1 Are the measured variables themselves of interest to the study goal, or is their underlying construct? 7.2 What are the justifications for the choice of variables? Strength of operationalizing results: 7.3 Who can be affected (positively or negatively) by the research findings? 7.4 What can the affected parties do about it?
8. Communication	8.1 Is the exposition of the goal, data and analysis clear?8.2 Is the exposition level appropriate for the readership of this journal?8.3 Are there any confusing details or statements that might lead to confusion or misunderstanding?

Table 2 InfoQ questionnaire for reviewing an empirical research paper or study

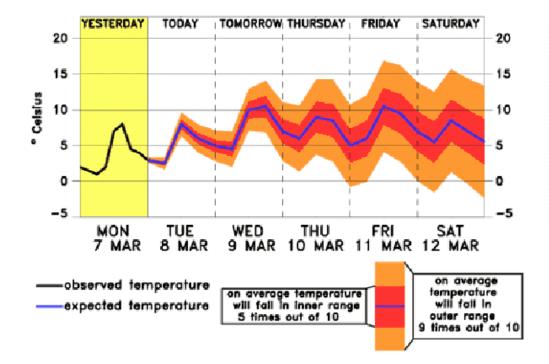
Information Quality

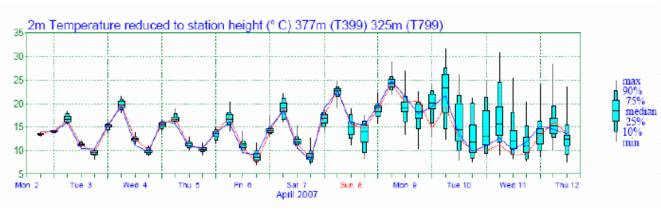
The potential of a particular dataset to achieve a particular goal using a given empirical analysis method

1. Data resolution

- 2. Data structure
- 3. Data integration
- 4. Temporal relevance

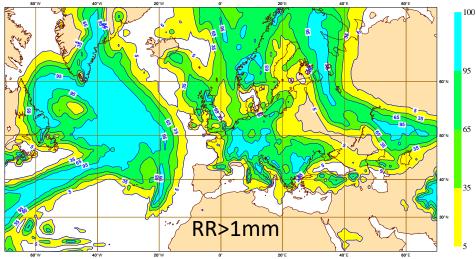
How

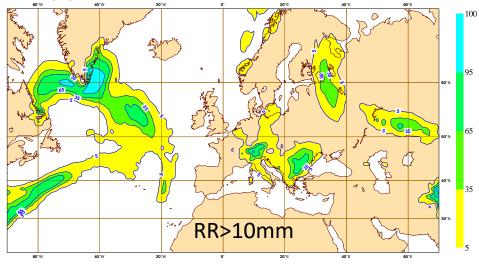

5. Chronology of data and goal


6. Generalizability

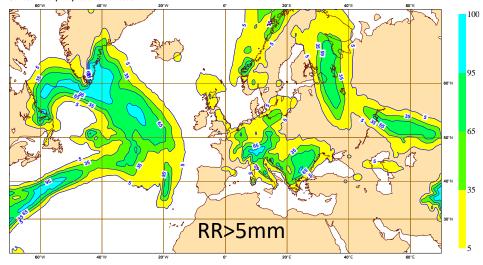
7. Operationalization

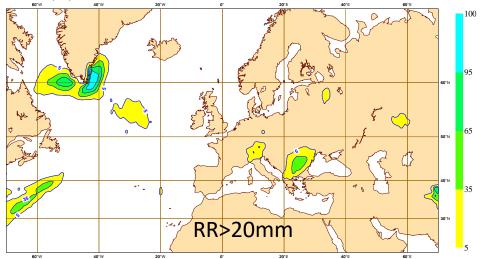
8. Communication


Visualization of time series



Probability Maps


Sunday 13 April 2008 00UTC ©ECMWF Forecast probability t+036-060 VT: Monday 14 April 2008 12UTC - Tuesday 15 April 2008 12UTC Surface: Total precipitation of at least 1 mm


Sunday 13 April 2008 00UTC ©ECMWF Forecast probability t+036-060 VT: Monday 14 April 2008 12UTC - Tuesday 15 April 2008 12UTC Surface: Total precipitation of at least 10 mm

Sunday 13 April 2008 00UTC ©ECMWF Forecast probability t+036-060 VT: Monday 14 April 2008 12UTC - Tuesday 15 April 2008 12UTC Surface: Total precipitation of at least 5 mm

Sunday 13 April 2008 00UTC ©ECMWF Forecast probability t+036-060 VT: Monday 14 April 2008 12UTC - Tuesday 15 April 2008 12UTC Surface: Total precipitation of at least 20 mm

Communication Checklist

- 1. Why was this work done?
- 2. For whom was it done?
- 3. To whom do you want to communicate information about the work?
- 4. Why would they be interested?
- 5. What information for what audiences?
- 6. Who may benefit from the work?
- 7. Who originated it?

Communication Checklist

- 8. What exchange, style and content of memoranda were needed to clarify the purpose of the project?
- 9. What communication measures were needed to establish high quality and timely data collection?
- 10. What support was needed from colleagues or specialists?
- 11. What progress memoranda and reports were written and for whom?

Tables

- Right justify numbers in tables;
- Line up decimal points in columns;
- Round numbers so that the two most effective digits are visible;
- Avoid distortion of the information in the data;
- Add rows and column averages or total where these are appropriate and may help;
- Consider re-ordering rows and/or columns to make the table clearer;
- Consider transposing the table;
- Give attention to the spacing and layout of the table.

Graphics

- Use graphs when the shape of the data, such as trends or groups, are more important than exact values;
- Be sure that the graphic shows the data, so that you persuade the reader to think about the substance rather than the methodology or graphic design;
- Design the graphic so that it encourages the reader's eye to compare different pieces of data;
- Reveal the data at several levels of detail, from a broad overview to the fine structure
- Give every graph a clear, self-explanatory title

Graphics

- State all measurement units;
- Choose scales on graphs carefully;
- Label axes clearly;
- Avoid chart junk;
- Improve by trial-and-error since you rarely get the graphic right first time;
- Beware of the graphic artist who aims to beautify the image but fails to elucidate the data. So insist on checking the figures after the artist has done the work.
- Beware of misleading scales.

"How to Display Data Badly" (1984) H. Wainer, The American Statistician, vol 38, pp 137-147.

How to Display Data Badly

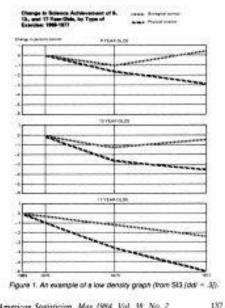
HOWARD WAINER*

Methods for displaying data badly have been developing for many years, and a wide variety of interesting and inventive schemes have emerged. Presented here is a synthesis yielding the 12 most powerful techniques that seem to underlie many of the realizations found in practice. These 12 (the dirty dozen) are identified and illustrated.

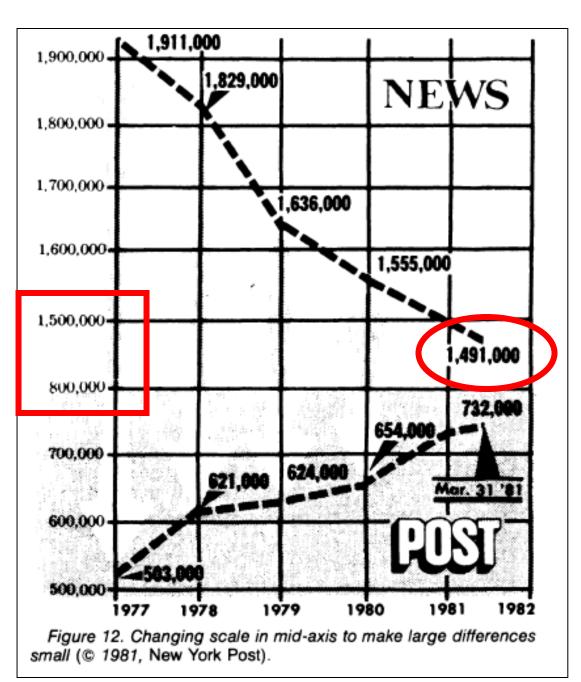
KEY WORDS: Graphics; Data display; Data density; Data-ink ratio.

1. INTRODUCTION

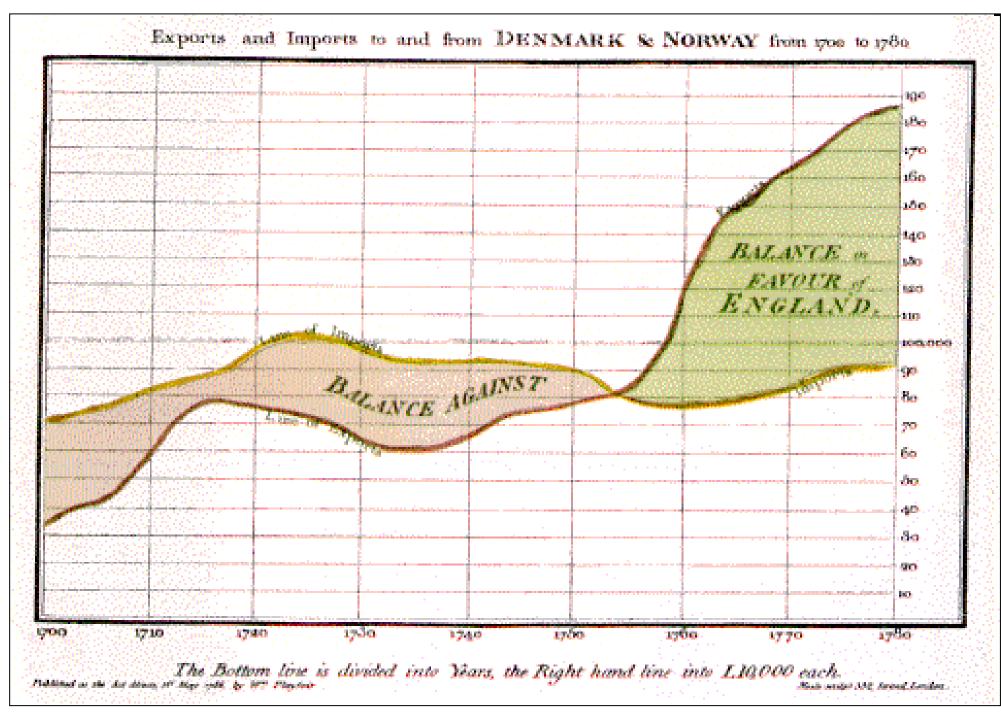
The display of data is a topic of substantial contemporary interest and one that has occupied the thoughts of many scholars for almost 200 years. During this time there have been a number of attempts to codify standards of good practice (e.g., ASME Standards 1915; Cox 1978; Ehrenberg 1977) as well as a number of books that have illustrated them (i.e., Bertin 1973,1977,1981; Schmid 1954; Schmid and Schmid 1979; Tufte 1983). The last decade or so has seen a tremendous increase in the development of new display techniques and tools that have been reviewed recently (Macdonald-Ross 1977; Fienberg 1979; Cox 1978; Wainer and Thissen 1981). We wish to concentrate on methods of data display that leave the viewers as uninformed as they were before seeing the display or, worse, those that induce confusion. Although such techniques are broadly practiced, to my knowledge they have not as yet been gathered into a single source or carefully

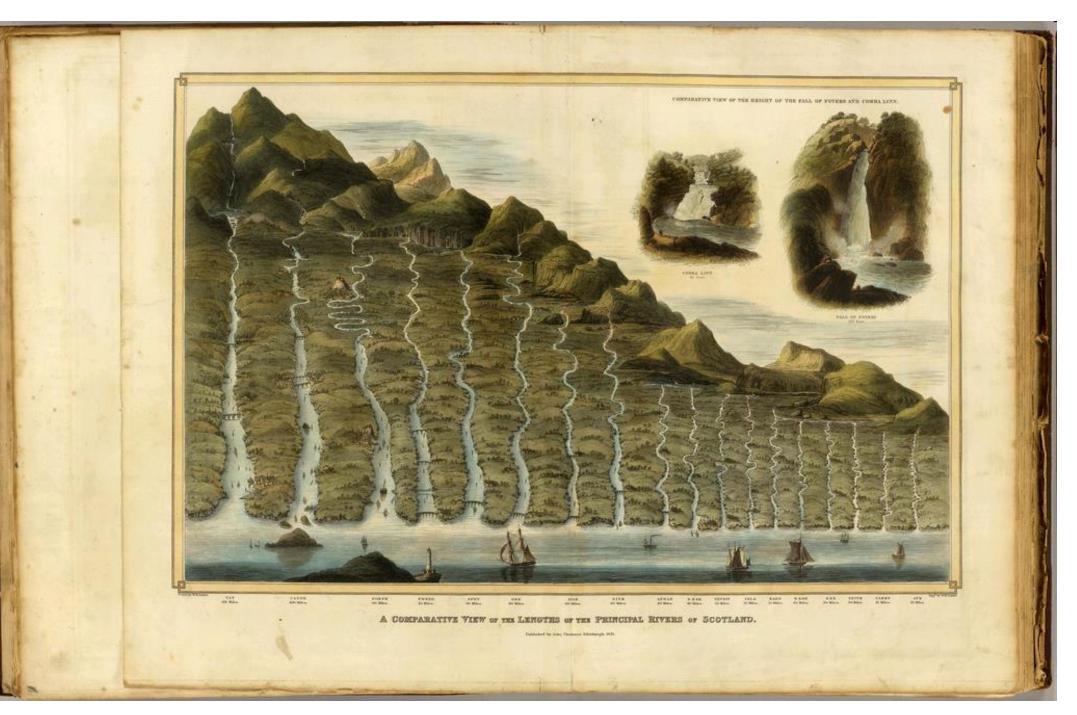

"Howard Wainer is Senior Research Scientist, Educational Testing Service, Princeton, NJ 08541. This is the text of an invited address to the American Statistical Association. It was supported in part by the Program Statistics Research Project of the Educational Testing Service. The author would like to express his gratitude to the numerous triands and colleagues who read or heard-this article and offered valuable suggestions for its improvement. Especially helpful were David Andrews, Paul Holland, Brace Kaplan, Junes O. Ramony, Edward Tuffe, the participants in the Stanford Workshop on Advanced Graphical Presentation, two anonymous referees, the longsuffering associate editor, and Gary Kosh-

categorized. This article is the beginning of such a compendium


The aim of good data graphics is to display data accurately and clearly. Let us use this definition as a starting point for categorizing methods of bad data display. The definition has three parts. These are (a) showing data, (b) showing data accurately, and (c) showing data clearly. Thus, if we wish to display data hadly, we have three avenues to follow. Let us examine them in sequence, parse them into some of their component parts. and see if we can identify means for measuring the success of each strategy.

2. SHOWING DATA

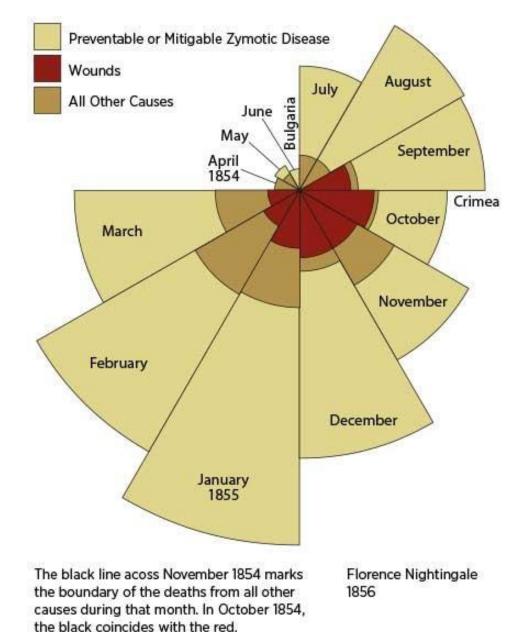

Obviously, if the aim of a good display is to convey information, the less information carried in the display,



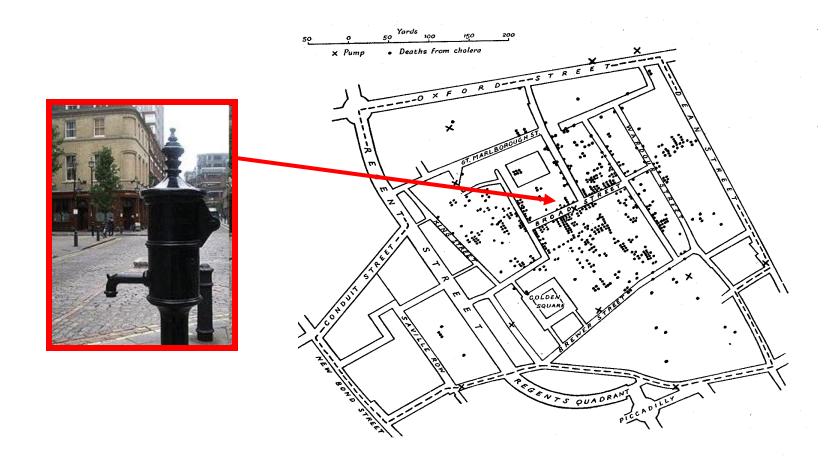
William Playfair's trade-balance time-series chart, published in his Commercial and Political Atlas, 1786

А

comparative view of the lengths of the principal rivers of Scotland with comparative view of the height of the falls of Foyers and Corra Linn (1831).



After witnessing deplorable sanitary conditions in the Crimea, Florence Nightingale wrote *Notes on Matters Affecting the Health, Efficiency and Hospital Administration of the British Army* (1858), including several graphs of her own design, which she called "Coxcombs". This figure makes it clear that far more deaths were attributable to non-battle causes ("preventable causes") than to battle-related causes

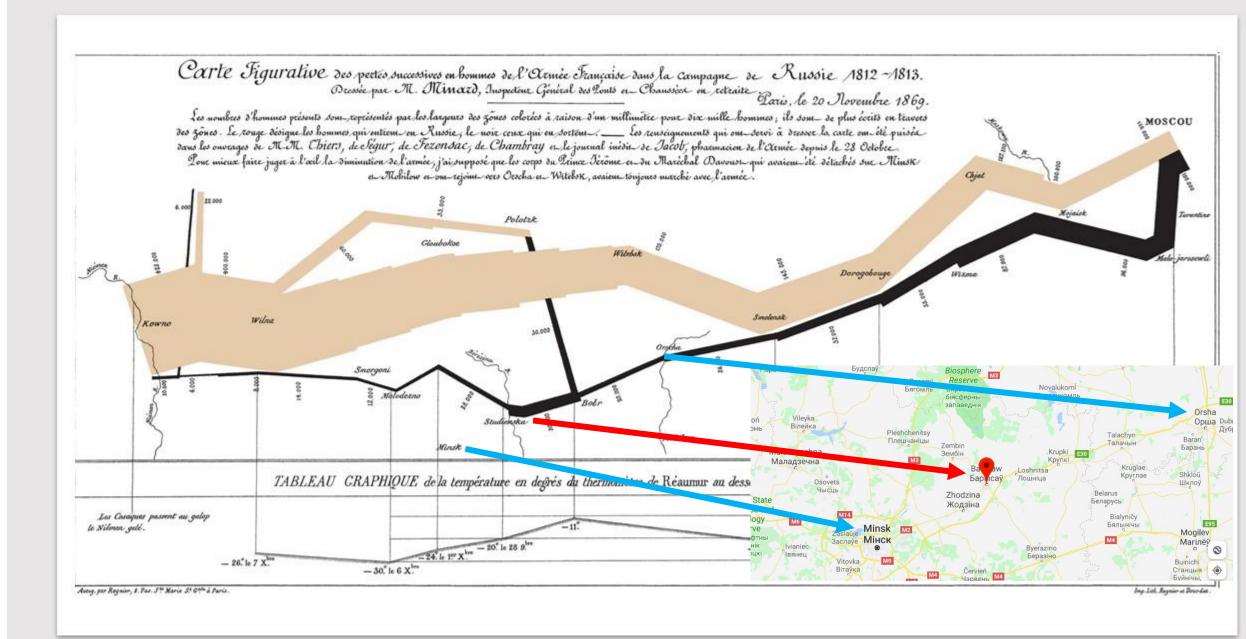

> TABLE SHOWING the ESTIMATED AVERAGE MONTHLY STRENGTH of the ARMY; and the Deaths and Annual Rate of Mortality per 1,000, in each Month, from April, 1854, to March, 1856, (inclusive), in the Hospitals of the Army in the East.

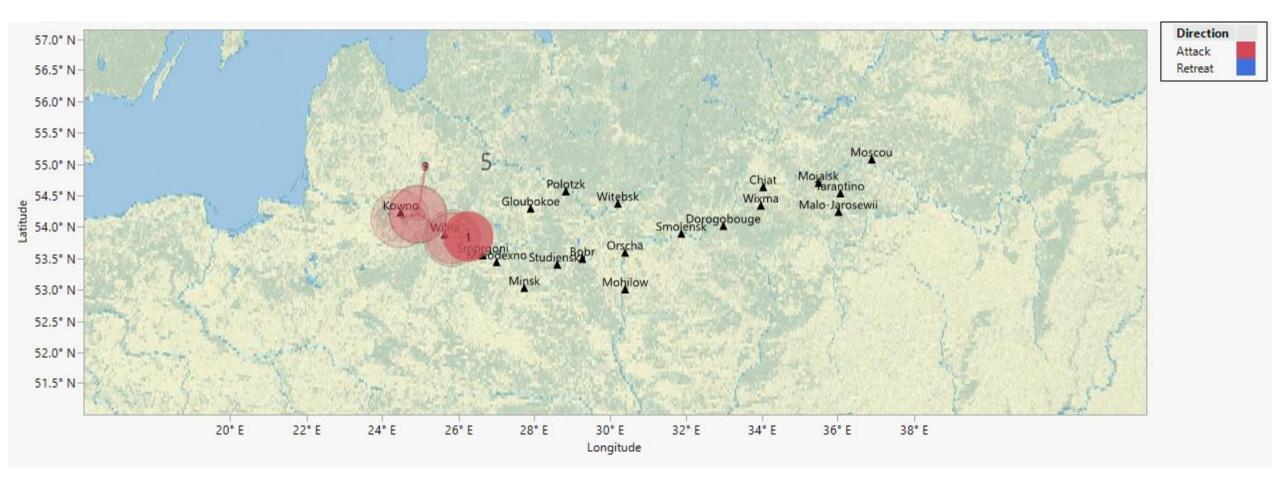
Months		Estimated Average	Deaths.			ANNUAL RATE OF MOR- TALITY PER 1,000.			
		Monthly Strength of the Army.		Wounds and Injuries.	All other Causes.	Zymotie Diseases.	Wounds and Injuries.	All other Causes,	
1854	April		8,571	1		5	1.4		7.0
	May		23,333	12		9	6.2		4.6
	June		28,333	11		6	4.7		2.5
	July		28,722	359		23	150.0		9.6
	August		30,246	828	1	30	328.5	•4	11.9
	September		30,290	788	81	70	312.2	32.1	27.7
	October		30,643	503	132	128	197.0	51.7	50.1
	November		29,736	844	287	106	340.6	115.8	42.8
	December		32,779	1,725	114	131	631.5	41.7	48.0
1855	January		32,393	2,761	83	324	1022.8	30.7	120.0
	February		30,919	2,120	42	361	822.8	16.3	140.1
	March	••	30,107	1,205	32	172	480.3	12.8	68.6
	April		32,252	477	48	57	177.5	17.9	21.2
	May		35,473	508	49	37	171.8	16.6	12.5
	June		38,863	802	209	31	247.6	64.5	9.6
	July		42,647	382	134	33	107.5	37.7	9.3
	August		44,614	483	164	25	129.9	44.1	6.7
	September		47,751	189	276	20	47.5	69.4	5 0
	October		46,852	128	53	18	32.8	13.6	4.6
	November		37,853	178	33	32	56.4	10.5	10.1
	December		43,217	91	18	28	25.3	5.0	7.8
1856	January		44,212	42	2	48	11.4	•5	13.0
	February		43,485	24		19	6.6		5.2
	March		46,140	15		35	3.9		9.1

Diagram of the Causes of Mortality in the Army in the East



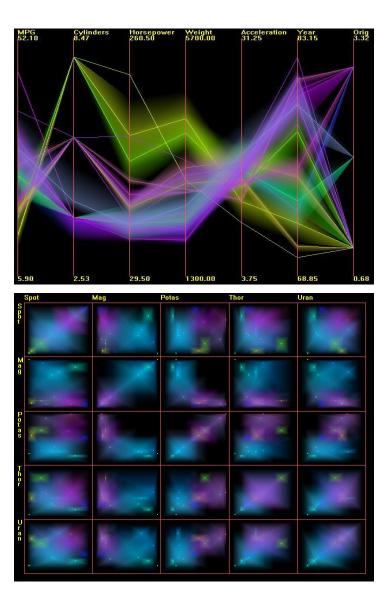
The cholera outbreak in Soho, England, in 1854. John Snow (1813–1858)




Hans Rosling

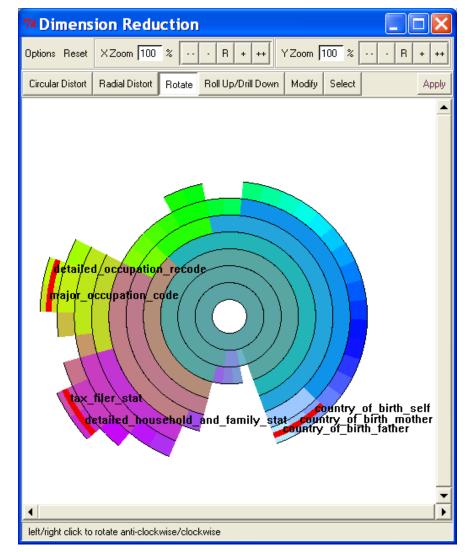
http://www.gapminder.org/videos/ted-talks/hans-rosling-ted-2006-debunking-myths-about-the-third-world/

44



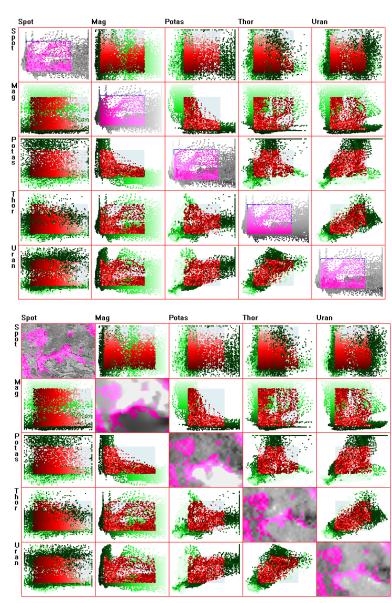
Visual Analytics

Data Sources	Transforms Abstractions	Visual Representations	Interaction Spaces	Discovery & Reasoning
-Files	-Clustering	-Data	-Data	-Clusters
-Databases	-Sampling	(multiple)	-Structure	-Associations
-Numeric	-Nominal to	-Statistics	(hierarchy)	
-Nominal -Quality	ordinal -Dimension reduction	-Structure (hierarchy)	-Spatial -Temporal	-Trends -Hypotheses -Outliers
 -Uncertainty -Missing values 	-Clutter reduction	-Data quality -Abstraction quality -Anomalies	-Quality	

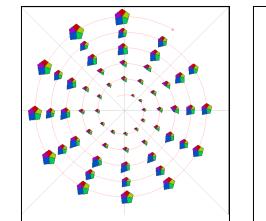

Multiresolution Visualization

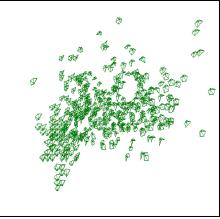
- For large datasets, visualizations quickly get cluttered
- Hierarchical clustering generates many levels of detail
- User can select areas of interest to view at full resolution while the rest of the data is shown via cluster centers and extents (shown as bands of variable opacity)

Dimension Reduction

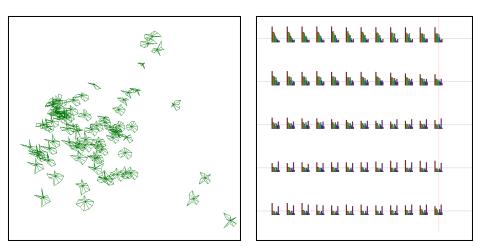

- Dimensions are hierarchically clustered based on similarity measures
- Hierarchy displayed using Inter Ring
- Users select clusters of dimensions or representative dimensions for detailed analysis

42 dimension census dataset.

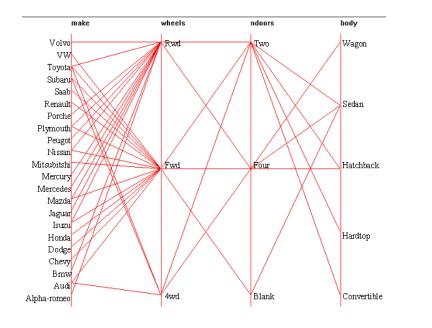

Linking Spatial and Non-Spatial

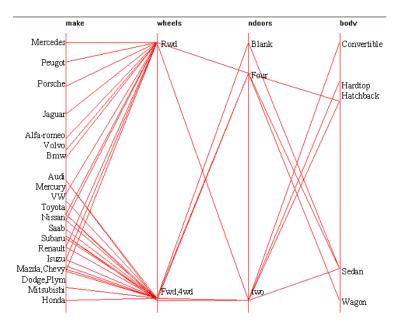

- Diagonal plots of scatterplot matrix can have numerous uses
- Example shows multispectral remote sensing data, 1 layer per diagonal plot
- User can select in either 2-D or parameter space and see corresponding elements in other views.

Layout Strategies


- Different layout strategies can reveal different patterns in the data
- Detecting, classifying, and measuring trends, outliers, repeated patterns, clusters, and correlations can be facilitated via specific layouts

Data Driven

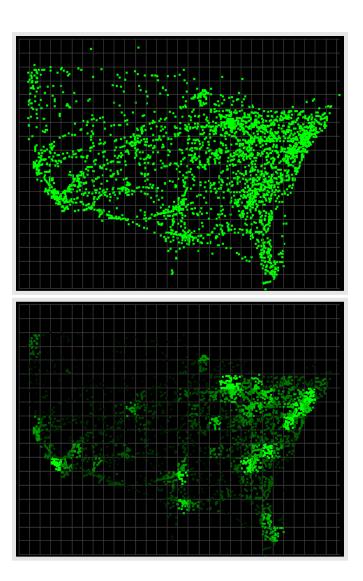



Principal Components

Order Driven

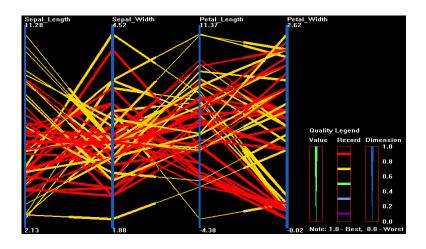
Visualizing Data with Parallel Plots

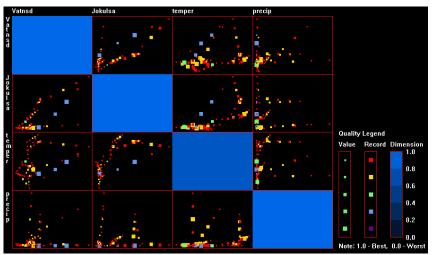
- Arbitrary assignment of non-numeric fields to numbers can lead to misinterpretation, lost patterns
- By looking at similarities in distributions across all dimensions, we can group values of a nominal variable with similar global characteristics
- Assignments used to convey order and relative distance



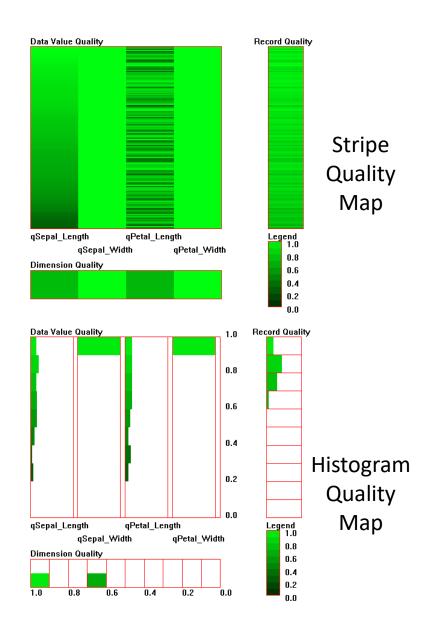
Original Assignment

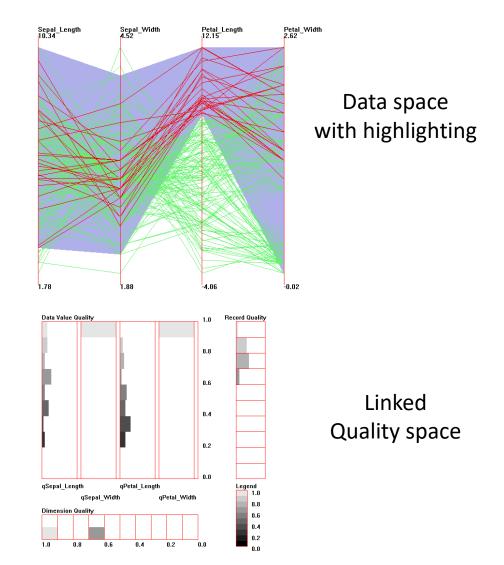
Assignment after Correspondence Analysis


Visual Clutter Reduction

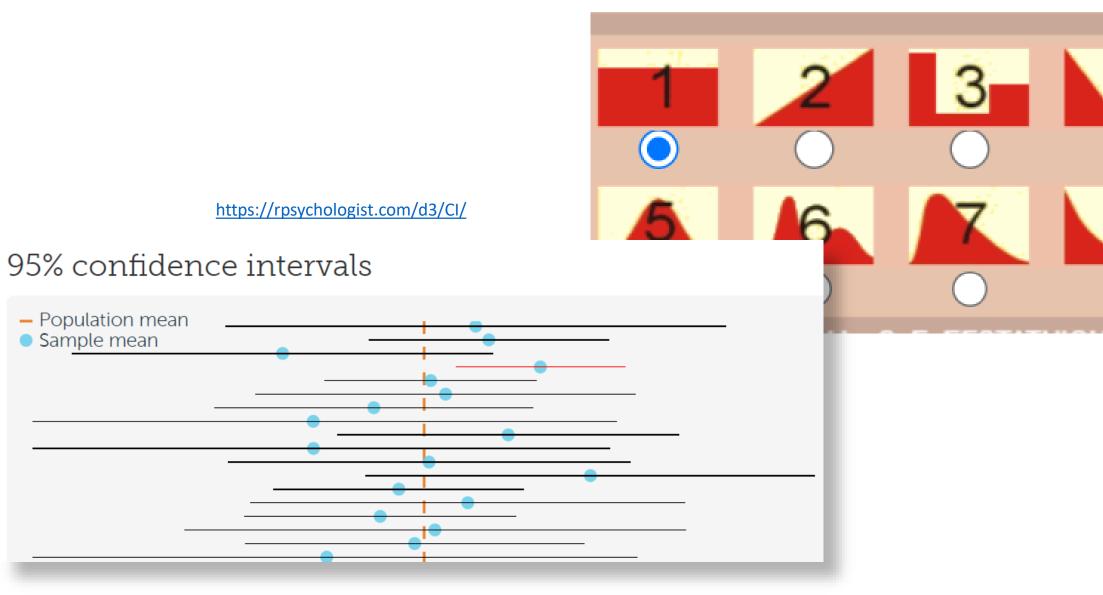

- In scenes with thousands of moving objects, there is need to reduce clutter
- Many strategies, including:
 - Information-preserving
 - Information-reducing
 - Visual remapping

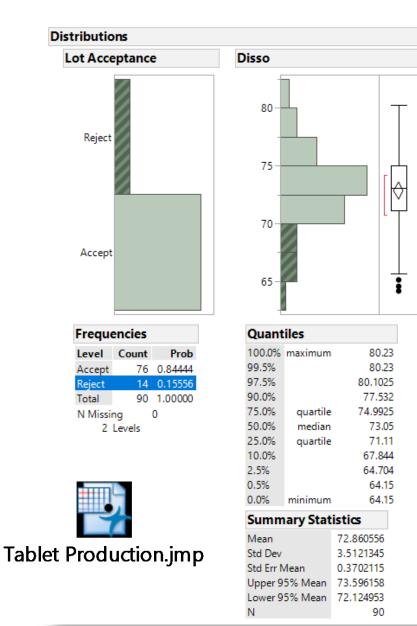
Data Quality Visual Encoding


- Data quality refers to the degree of uncertainty of data
- Quality measures are visually encoded into existing visualizations
- This helps users focus on high quality data to draw reliable conclusions

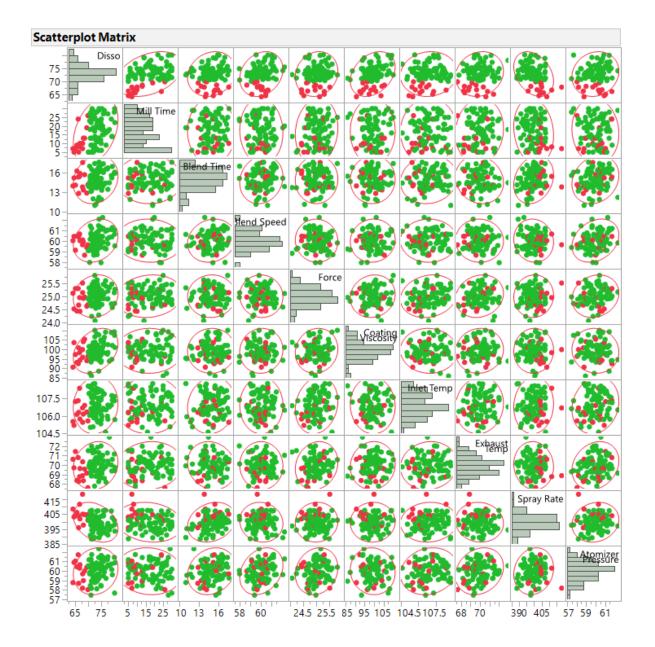

Quality Space Visualization

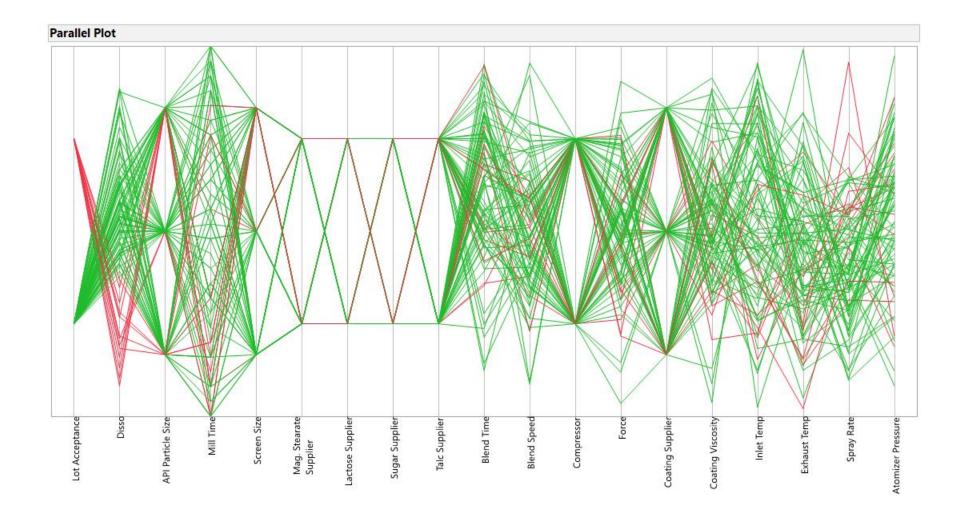
- Quality space is visualized separately to convey patterns in the data quality measures
- Records or dimensions can be ordered by quality to reveal structure and relations
- Stripe view shows individual data value quality; Histogram view shows summarization and distribution

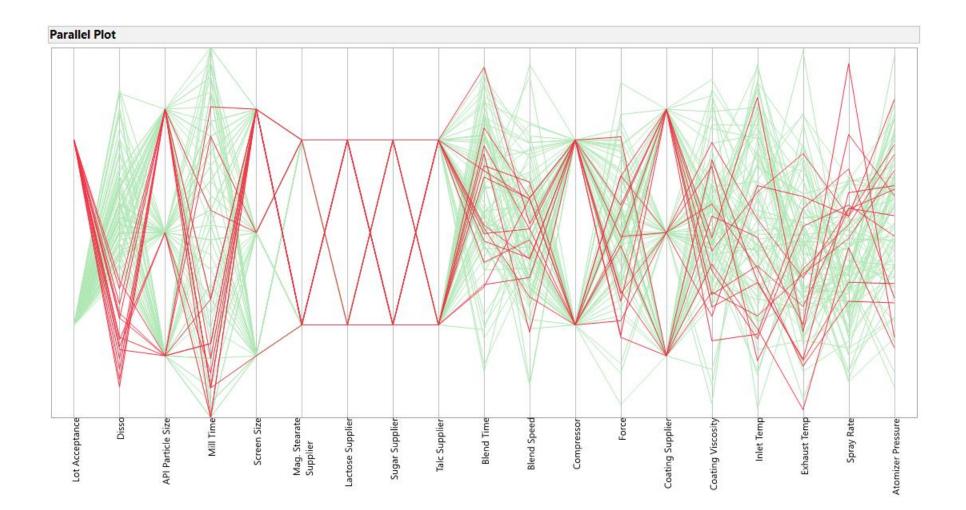


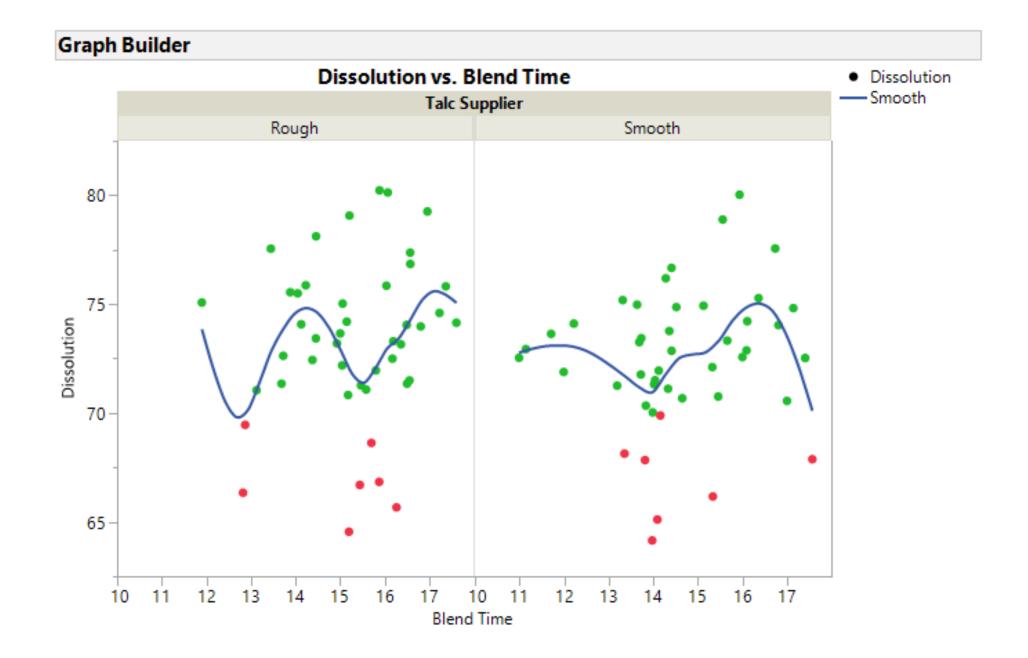

Interactions between Data Space and Quality Space

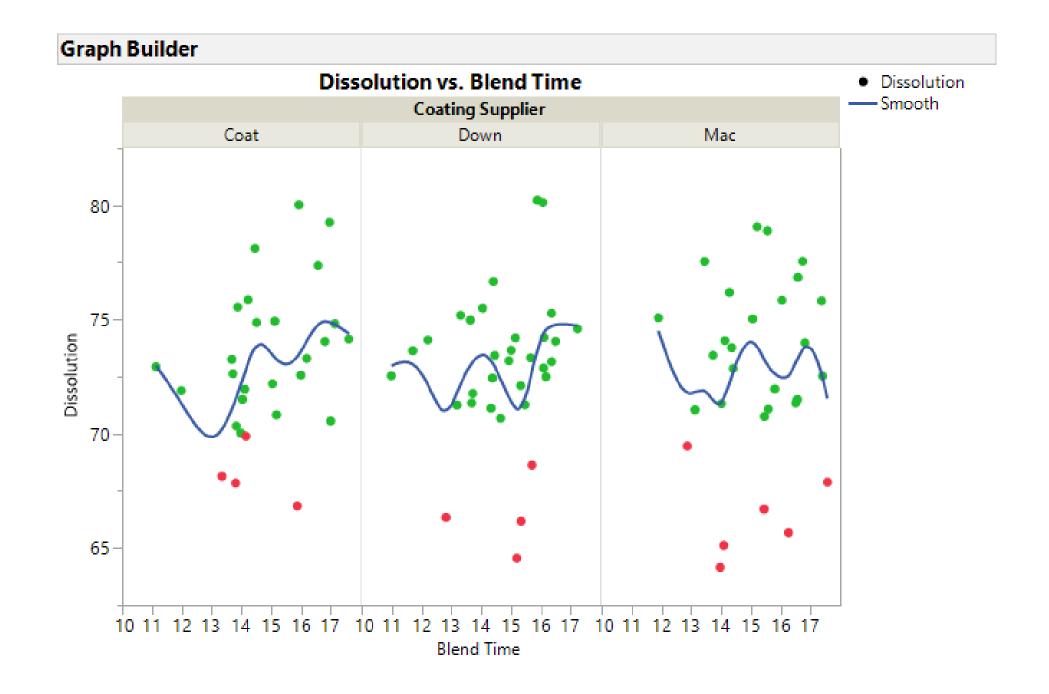
- Linking brush: When users select a subset in one space, the corresponding subset in the other space will be highlighted accordingly.
- Sample figures: The data points in the data space with high values in the third dimension are highlighted, then the distribution of quality measures for this subset is rendered in the quality map.

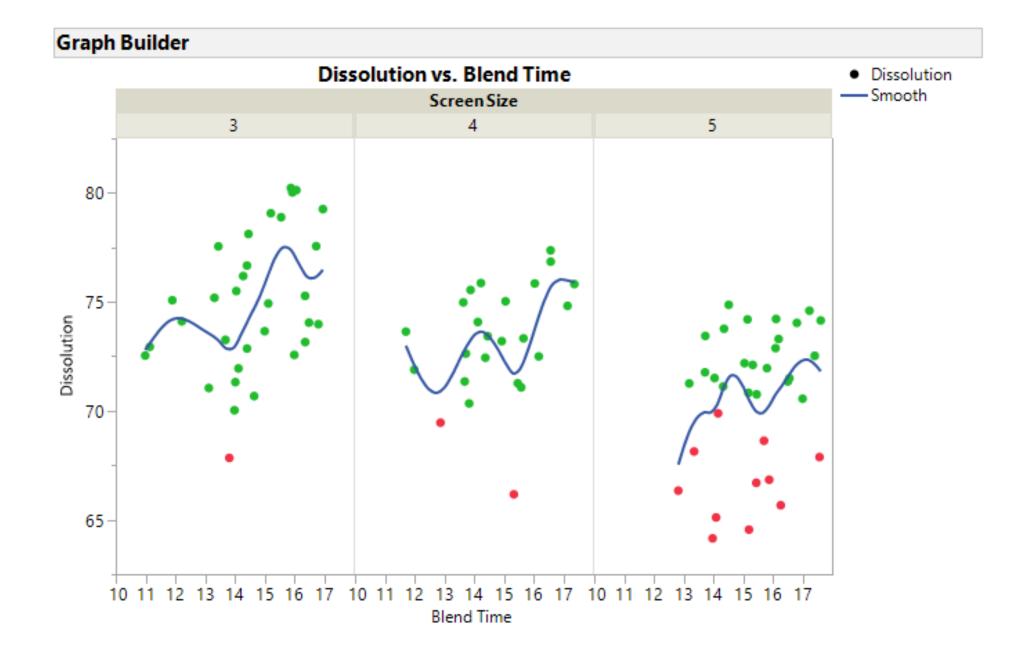


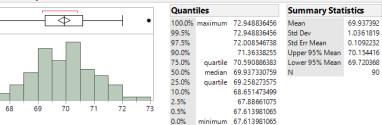

http://195.134.76.37/applets/AppletCentralLimit/Appl CentralLimit2.html



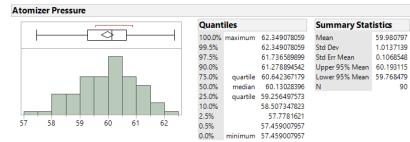


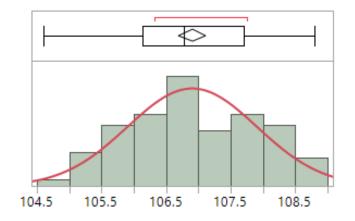





Corre	lations

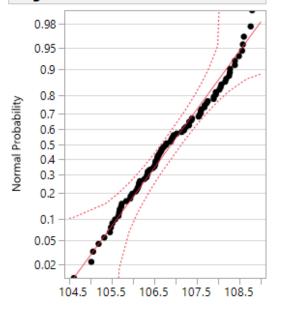
	Mill Time B	lend Time Bl	end Speed	Force Coa	ting Viscosity	Inlet Temp Ex	khaust Temp	Spray Rate	Atomizer Pressure	Dissolution
Mill Time	1.0000	0.0004	-0.0436	0.1116	0.0057	0.0217	0.0810	-0.1381	-0.0775	0.3638
Blend Time	0.0004	1.0000	0.1348	0.0241	0.0223	0.0977	-0.1257	0.2145	0.1841	0.1598
Blend Speed	-0.0436	0.1348	1.0000	-0.0301	0.0482	0.0059	-0.0184	-0.0745	0.2632	0.2143
Force	0.1116	0.0241	-0.0301	1.0000	0.0928	0.1535	0.1402	0.0421	0.1506	0.1271
Coating Viscosity	0.0057	0.0223	0.0482	0.0928	1.0000	-0.0331	0.0570	0.0287	-0.0615	0.3194
Inlet Temp	0.0217	0.0977	0.0059	0.1535	-0.0331	1.0000	0.0761	0.0603	0.1476	0.0755
Exhaust Temp	0.0810	-0.1257	-0.0184	0.1402	0.0570	0.0761	1.0000	-0.0628	0.1977	0.1327
Spray Rate	-0.1381	0.2145	-0.0745	0.0421	0.0287	0.0603	-0.0628	1.0000	0.1380	-0.3292
Atomizer Pressure	-0.0775	0.1841	0.2632	0.1506	-0.0615	0.1476	0.1977	0.1380	1.0000	0.1288
Dissolution	0.3638	0.1598	0.2143	0.1271	0.3194	0.0755	0.1327	-0.3292	0.1288	1.0000


Inlet Temp	E	haust Temp	Spray Rate	Atomizer Pressure
107.9		70.5	404.6	61.0
107.5		70.8	407.4	60.6
106.6		69.2	399.3	59.1
106.1		68.8	403.7	58.8
108.3		69.4	396.7	59.6
106.3		69.1	404.7	60.4
106.1		69.7	399.3	58.4
107.6		70.0	398.5	61.6
107.2		71.4	404.0	61.1
106.8		70.4	394.9	59.5
105.2		69.7	403.3	60.9
105.5		71.9	395.4	59.7
106.6		69.3	397.7	57.5
106.6		70.1	388.4	58.2
105.3		68.7	391.6	58.5
106.7		68.9	418.5	58.2
108.1		69.4	402.3	60.5
105.9		69.1	396.8	60.2
106.5		69.1	397.2	62.3
105.5		70.6	408.5	58.8
107.6		70.6	401.1	60.4
106.9		69.6	404.8	60.0
106.7		69.6	407.4	61.4
107.4		72.0	403.6	60.1
105.0		70.3	390.9	58.5
107.7		71.2	400.9	61.4


	Quant	iles		Summary Stat	istics
	100.0%	maximum	108.79765542	Mean	106.9035
	99.5%		108.79765542	Std Dev	1.0021833
	97.5%		108.7196325	Std Err Mean	0.1056394
	90.0%		108.27844338	Upper 95% Mean	107.1134
	75.0%	quartile	107.69690533	Lower 95% Mean	106.6936
	50.0%	median	106.77968341	N	90
	25.0%	quartile	106.13953111		
	10.0%		105.58605819		
	2.5%		105.030777		
106.5 107.5	108.5 0.5%		104.60908689		

	Quantiles		Summary Statistics		
	100.0%	maximum	418.49400196	Mean	399.70046
	99.5%		418.49400196	Std Dev	5.4666398
	97.5%		410.88281454	Std Err Mean	0.5762344
	90.0%		407.08319782	Upper 95% Mean	400.84543
	75.0%	quartile	403.66964498	Lower 95% Mean	398.5555
	50.0%	median	399.32559204	N	90
	25.0%	quartile	395.85948298		
	10.0%		392.54095393		
	2.5%		388.78379884		
85 390 395 400 405 410 415 420	0.5%		388.40679041		
	0.0%	minimum	388.40679041		

Normal(106.903,1.00218)

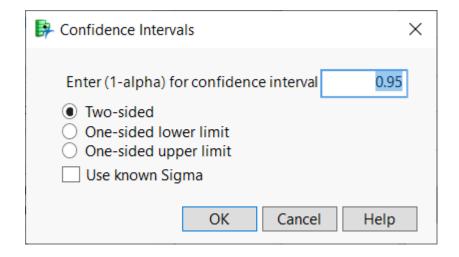

Comp	Compare Distributions						
Show	Distribution	Number of Parameters	-2*LogLikelihood	AICc			
	SHASH	4	248.053662	256.52425			
	Normal 2 Mixture	5	247.568499	258.282785			
	Gamma	2	254.794139	258.93207			
	LogNormal	2	254.79609	258.934021			
\checkmark	Normal	2	254.801502	258.939433			
	Johnson SI	3	254.794544	261.073614			
	GLog	3	254.795904	261.074974			
	Johnson Su	4	254.795964	263.266553			
	Normal 3 Mixture	8	247.982016	265.759794			
	Weibull	2	262.445187	266.583118			
	Extreme Value	2	262.445187	266.583118			
	Exponential	1	1020.94678	1022.99223			

Fitted Normal

Parameter Estimates Type Parameter Estimate Lower 95% Upper 95%

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	an anne cer	Estimate.	2011-01-0070	opper solo
Location µ	ı	106.9035	106.6936	107.1134
Dispersion of	J	1.0021833	0.8741169	1.1745646
Measure				
-2*LogLikeli	hood 254	.8015		
AICc	258.	93943		
BIC	263.	80112		

Diagnostic Plot


Inlet Temp

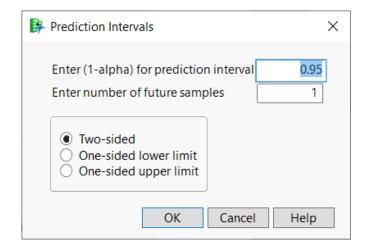
Goodness-of-Fit Test

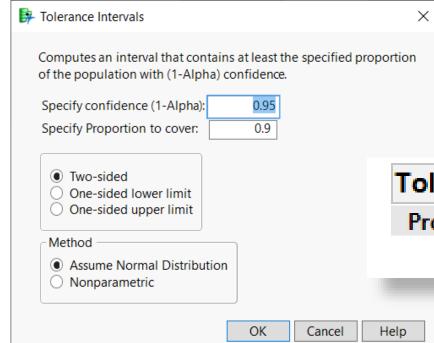
Shapiro-Wilk W Test					
w	Prob <w< th=""></w<>				
0.980334	0.1906				

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

🙀 CI for Mean from Summary	Statistics - JMP Pro [3]	- 🗆 ×	(
	✓ Summary Information		
○z	Sample Average	106.9	
• t	Sample Standard Deviation	1.002	
	Sample Size	90	
	Confidence Level 0.95		
	Result	Value	
	t multiplier	1.98698	
	Standard Error of the Mean	0.10562	
	Lower Limit	106.69	
	Upper Limit	107.11	
	106.6109 106.8180 1 Mean Rescale Ax		
		☆ 🗌 ▼	

Confidence Intervals


Parameter	Estimate	Lower CI	Upper CI	1-Alpha
Mean	106.9035	106.6254	107.1816	0.990
Std Dev	1.002183	0.838607	1.237307	0.990


Confidence Intervals

Parameter	Estimate	Lower CI	Upper Cl	1-Alpha
Mean	106.9035	106.6936	107.1134	0.950
Std Dev	1.002183	0.874117	1.174565	0.950

Confidence Intervals								
Parameter	Estimate	Lower CI	Upper CI	1-Alpha				
Mean	106.9035	106.7279	107.0791	0.900				

Mean	106.9035	106.7279	107.0791	0.900
Std Dev	1.002183	0.893286	1.14444	0.900

Prediction Interval										
Parameter Future N Lower PI Upper PI 1-Alph										
Individual	1	104.9012	108.9058	0.950						
Mean	1	104.9012	108.9058	0.950						
Std Dev	1			0.950						

Prediction Interval									
Parameter	Future N	Lower Pl	Upper PI	1-Alpha					
Individual	10	104.0025	109.8045	0.950					
Mean	10	106.2397	107.5673	0.950					
Std Dev	10	0.542555	1.506759	0.950					

Tolerance Intervals								
Proportion	Lower TI	Upper TI	1-Alpha					
0.900	105.0095	108.7975	0.950					
_								

The Challenger

Kenett, R. and Thyregod, P. (2006) Aspects of statistical consulting not taught by academia, *Statistica Neerlandica*, special issue on Industrial Statistics, 30, 3, pp. 396-412.

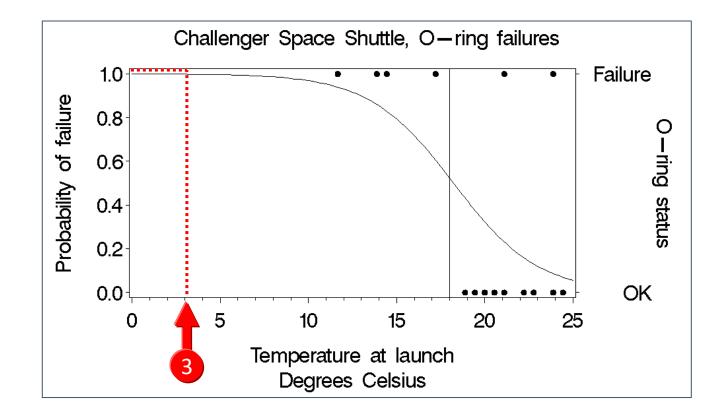
O-ring

The Challenger

The US space shuttle Challenger was cheduled to take-off on January 28th, 1986, with seven crew members. Engineers from Morton Thiokol, manufacturers of the rocket motors, had been worried about problems with the O-ring seals. They feared that low temperatures greatly and adversely affected the ability of O-rings to create a seal on solid rocket booster joints.

On the night before the flight, the temperature predicted at launch time was 3° C, and the engineers expressed their concerns over the effect of the unseasonable cold weather on the O-rings and suggested to abort the flight.

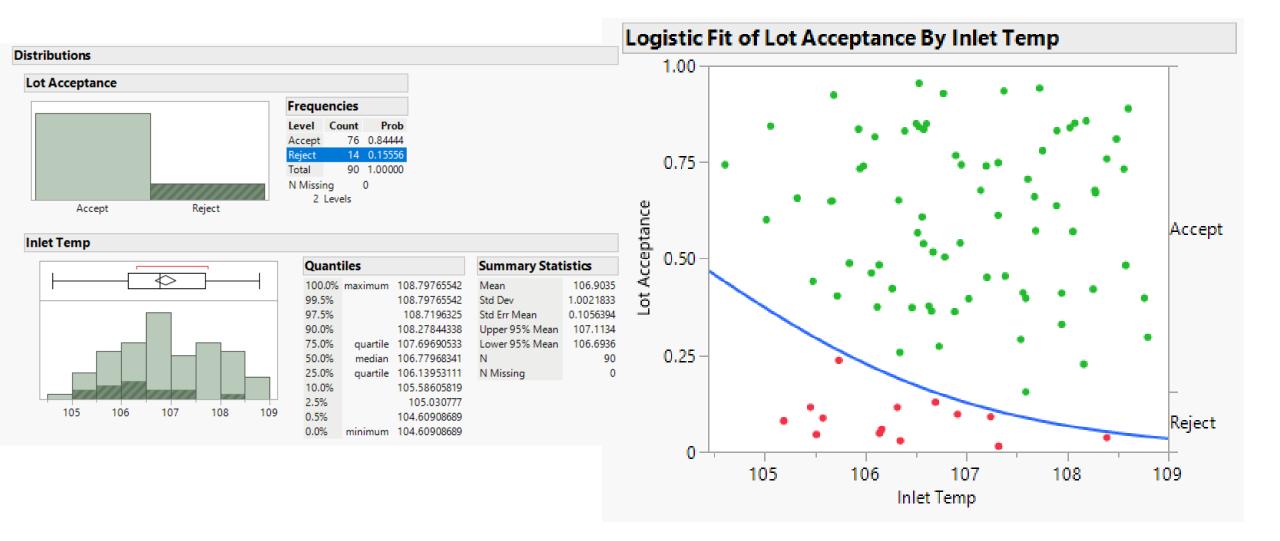
The Challenger

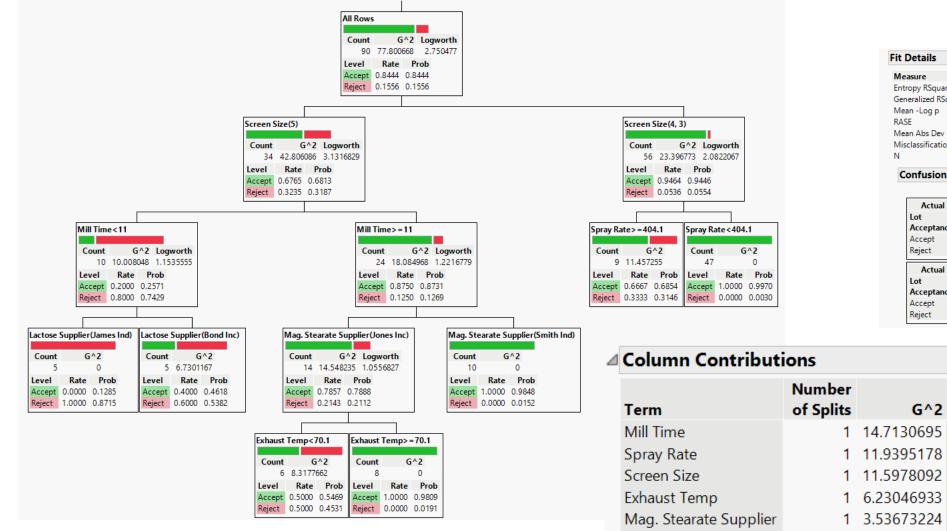

A telephone conference was held between NASA engineers and managers and Thiokol engineers and managers.

With short notice, the Thiokol engineers presented their case via 13 telefaxed charts and their commentary and argument.

However, they failed to convince the managers that temperature was a factor in O-ring performance or damage, and it was decided to **go ahead** with the launching.

Probability of O-ring Failure


<u>F</u>ile <u>E</u>dit <u>T</u>ables <u>Rows</u> <u>C</u>ols <u>D</u>OE <u>A</u>nalyze <u>G</u>raph <u>Tools</u> <u>Add-Ins</u> <u>View</u> <u>W</u>indow <u>H</u>elp


| 🖼 🦫 🧉 | 🔏 🛍 | 🕾 🛆 | 🗨 🍦 🛗 🖽 🚍 🖄 🎽 📝

	₫ ~20	/1 Cols 💌												
Reference Based on tablet produc		F	API Particle Size	Mill Time	Screen Size	Mag. Stearate Supplier	Lactose Supplier	Sugar Supplier	Talc Supplier	Blend Time	Blend Speed	Compressor	Force	Coi
 Control Chart and Distribution Distribution 	•	1	Small	27	4	Smith Ind	James Ind	Sour	Rough	16.0	59.9	Compress2	25.5	Ma _c ^
 Multivariate 	•	2	Small	11	5	Jones Inc	James Ind	Sour	Smooth	14.4	59.8	Compress2	24.9	Ma
Oneway	•	3	Small	20	4	Jones Inc	Bond Inc	Sour	Rough	14.5	60.8	Compress2	25.5	Dov
Parallel Plot	•	4	Small	13	3	Smith Ind	Bond Inc	Sweet	Smooth	14.4	59.4	Compress1	24.8	Ma
 Partition Fit Model 	•	5	Small	13	5	Smith Ind	James Ind	Sweet	Smooth	16.1	59.9	Compress2	25.3	Dov
 Fit Model with Interactions 	•	6	Small	19	4	Smith Ind	Bond Inc	Sweet	Rough	12.9	59.4	Compress2	24.6	Ma
Fit Model withaction Profiles	•	7	Small	10	4	Jones Inc	Bond Inc	Sweet	Smooth	13.6	59.8	Compress2	25.0	Dov
Generalized Regression	•	8	Small	24	4	Jones Inc	James Ind	Sour	Rough	15.1	61.1	Compress2	24.9	Ma
 Generalized Reduced Model Fit Y by X of L by Inlet Temp 	•	9	Small		i i i i i i i i i i i i i i i i i i i		ames Ind	Sour		de -		ress1	25.3	Ma
	•	10	Small				3ond Inc	Sweet			0.40 -0.0	ess2	25.4	Coa
Columns (21/1)	•	11	Small		1	7	Bond Inc	Sweet		S.	"ARCAY	ess1	24.5	Dov
۹	•	12	Small				ames Ind	Sour	L'A YC		HETA	ess1	24.9	Dov
🔥 API Lot No 📾 📃 🔨	•	13	Small	ahlet	Produ	iction.jmp	ames Ind	Sour 🎽	YVII V	C I		ess2	25.0	Ma
API Particle Size	•	14	Small	ubict	11000	iccion.jmp	Bond Inc	Sour 🔰	untr		20.00	ress1	24.6	Dov
A Mill Time L Screen Size	•	15	Small	22	5	Jones Inc	James Ind	Sweet	4			ress2	24.9	Coa
Mag. Stearate Supplier	•	16	Small	7	3	Jones Inc	James Ind	Sour		125-		ess2	25.5	Coa
Lactose Supplier	•	17	Small	6	3	Jones Inc	James Ind	Sweet	Shibban	10.0		compress1	25.1	Coa
🔥 Sugar Supplier	•	18	Small	30	3	Jones Inc	Bond Inc	Sweet	Smooth	16.4	61.2	Compress1	24.7	Dov
I Talc Supplier	•	19	Small	29	3	Smith Ind	Bond Inc	Sour	Smooth	12.2	59.8	Compress1	25.2	Dov
A Blend Time Blend Speed	•	20	Small	7	5	Jones Inc	Bond Inc	Sour	Smooth	14.0	60.0	Compress1	25.1	Ma
L Compressor	•	21	Small	25	5	Jones Inc	James Ind	Sour	Smooth	17.4	59.8	Compress1	25.8	Ma
A Force	•	22	Small	13	5	Jones Inc	Bond Inc	Sour	Rough	15.7	58.7	Compress2	25.0	Dov
🔥 Coating Supplier	•	23	Small	18	4	Jones Inc	James Ind	Sweet	Rough	17.4	61.2	Compress2	24.9	Ma
Costing Viscosity	•	24	Small	24	3	Smith Ind	Bond Inc	Sweet	Smooth	15.1	57.9	Compress2	25.0	Coa
Rows	•	25	Small	13	5	Smith Ind	Bond Inc	Sour	Rough	15.2	61.5	Compress2	24.7	Coa
All rows 90 Selected 0	•	26	Small	28	3	Jones Inc	Bond Inc	Sour	Smooth	15.9	61.1	Compress2	25.1	Coa
Excluded 0	•	27	Small	19	5	Smith Ind	James Ind	Sweet	Rough	15.8	60.2	Compress2	24.7	Ma
Hidden 0	•	28	Small	9	5	Jones Inc	James Ind	Sour	Rough	16.3	60.5	Compress2	24.4	Ma _{r V}
Labeled 0			<											>

☆ 🗌 ▼

– 0 ×

it Details			
leasure	Trai	nina	Def
			Defi
Entropy RSquare			1-Lo
Generalized RSquar Mean -Log p			(1-(l Σ-L
RASE			√Σ()
Mean Abs Dev			× 20 Σ Ιγ[
Misclassification Ra			
N	11e 0.1	90	-
			·· .
Confusion Ma	atrix		
Tra	aining		
Actual			
	Predicte	d Co	unt
Acceptance	Accept		
Accept	74		2
Reject	6	i i	8
Actual	Predicte	- D-	
Acceptance			
Accept	0.974		
Reject	0.429		
Reject	0.429	0.5	

Term	Number of Splits	G^2	Portion
Mill Time	1	14.7130695	0.2868
Spray Rate	1	11.9395178	0.2328
Screen Size	1	11.5978092	0.2261
Exhaust Temp	1	6.23046933	0.1215
Mag. Stearate Supplier	1	3.53673224	0.0689
Lactose Supplier	1	3.2779318	0.0639